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ABSTRACT. In this paper, we apply the dynamical systems method proposed by A. G. RAMM,
and the the variational regularization method to obtain numerical solution to some ill-posed
problems with noise. The results obtained are compared to exact solutions. It is found that the
dynamical systems method is preferable because it is easier to apply, highly stable, robust, and it
always converges to the solution even for large size models.
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2 N. H. SWEILAM AND A. M. NAGY

1. INTRODUCTION

Let A: H — H be a closed, densely defined linear operator on a Hilbert sgaGonsider
the following linear equations if/

(1.1) Au = f,

and assume that the ranfféA) is not closed, so that problefn (IL.1) is ill-posed. Let us assume
that f = Ay wherey is the minimal-norm solution of (1.1), and that noisy d#teare given

such that| f — f;|| < 4. Discretizing problem/[(1]1), one often deals with a finite-dimensional
problem of solving ill-conditioned linear algebraic system. Problen] (1.1) is called discrete ill-
posed problem if the matriM is ill- conditioned, that is the condition number is large and the
singular values ofA decay gradually to zero. Also the inverseAfmay not exist or may be
unbounded. Our goal in this paper is to compute a stable approximatiogiten fs . Discrete

ill posed problems arise in a variety of applications such as astronomylsee [3], computerized
tomography seeé [9], electrocardiography $ee [4], mathematical physics see [24] and other fields.
The classical example of an ill-posed problem is encountered in the linear Fredholm integral
equation of the first kind with a square integrable kernel:

b
(1.2) / K(s,t)u(t)dt = g(s), ¢<s<d,

where the right-hand sidgand the kernek are given functions andis an unknown function.

By using discretization techniques like Galerkin method with an orthonormal basis or quadra-
ture method seé [2], [5] andl[6], equati¢n (1.2) can be written as a linear systes g , with

K integral operator mappingto g. Since the kernel is square integrable dueb| x [c, d], then

it is a classical result thak™ is a compact operator fromh?[a, b] into L?[c, d]. Regularization
methods are often used to obtain stable and smooth solutions to such ill-posed problem. The
most common and well known technique for regularizing ill-posed problems is the variational
regularization method see[7], [23] and [24]. This method attempts to provide a good estimate
of the solution of[(1.1) by a solution, ; of the problem

(1.3) min{ || Au — fs]|* + allul*},

wherea is the regularization parameter angl; is the regularization solution. The success of
the variational regularization method depends on making a good choice of the regularization
parameter which is not easy to find. The reason isdhatis too sensitive to perturbations in
f,i.e., a small change ifi may produce a large changeup .

In this paper, we will consider two methods for solving numerically some ill-posed models
with noise. The first method is the dynamical systems method (DSM) which is proposed by A.
G. RAMM see[11]-[21] and the references therein. The DSM is based on an analysis of the so-
lution of Cauchy problem for nonlinear differential equations in Hilbert space. Such an analysis
was done for well-posed and some ill-posed problemd sée [11], and the references therein, using
some integral inequalities. The DSM has several attractive properties; it is fast convergent, can
be easily designed and no need to calculate the inverse of large condition number matrices. In
sectior] 2, a brief description of the analysis of the DSM is presented.

The second method is the variational regularization method|see [8], [23] and [24]. This
method consists of finding a global minimizer[of (1.3), whéres a noisy data anlf — f5|| < é.
The global minimizer of the quadratic functional (1.3) is the unique solution to the linear system
(A*A+ al)u, s = A* f5, wherel is the unit matrix. This system has a unique solution
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oy = (A*A+ al)"'A* f5. To determine the suitable, let u,s) s be a solution of[(1]3) and
consider the equation

(14) ||Aua,5 — f(;H = 7'5,

wherer €]1, 2[. Equation[(1.}4) is the usual discrepancy principle. One can prove that equation
) determinesr = a(9) uniquely,a(d) — 0 asd — 0, andu; = uqi)s — y Wherey

is the minimal-norm solution td (1.1) as— 0. This justifies the usual discrepancy principle

for choosing the regularization parameter see [8]. For more details on the theory of variational
regularization method see e.g.,[11, Chapter 2].

The accomplishment of the paper will be explained in the following manner. In sg¢gtion 2,
a brief description of the analysis of the DSM is presented. In sefjion 3, numerical experi-
ments and comparisons are made for the regularized solutions chosen by DSM and variational
regularization method. We end in sectjgn 4 with the conclusions.

2. ANALYSIS OF THE DSM

In this section, we will give a brief description of the analysis of the DSM and for more
details on the analysis of DSM see [11]- [21] and the references therein. The DSM analysis is
bases on a construction of a dynamical systems with the trajectory; by using Cauchy problem
for nonlinear differential equations in a Hilbert space; starting from an initial approximation
point and having a solution to problein ([L.1) as a limiting point. It is proved in(see [11] that if
equation|[(1]1) is solvable anig’ — f;|| < 4, the following results hold:

Theorem 2.1. Assume thaf = Ay, y L N(A), A is a linear operator, closed and densely
defined inH. Consider the problem

du 1 s
(21) % =—u+ Te(tl)A f ) U(O) = Uo,
N(A) :={u:Au— f =0}, u € Hisarbitrary, T, = T + ¢(t), T = A*A, e = €(t) is
a continuous function monotonically decaying to zere at oo and fooo €(s)ds = oco. Then
problem (2.1) has a unique solutiart) defined orj0, co), and the following limit exists:

limy—(so)u(t) == u(oo) and wu(oco) =y .
Itis pointed out in[[11] that iffs is given in place of the exact solutigh calculate its solution
us(t) ast = ts, it can be proved that
limgﬂ(oo)Hu(g(t(s) — y|| = 0.

If ¢5 is suitable chosen. The stopping timecan be uniquely determined, for example by
a discrepancy principle, see [17], for bounded operatarsAlso, it is pointed out that the
argument in see [11] remains valid in the case of unbountiedthout any change.

3. THE DYNAMICAL SYSTEMS ALGORITHM

The DSM is a stable regularized algorithm for solvifg [1.1), especially whisnreplaced
by the noise datds The algorithm can be applied by using the following steps:
Step 1. Solve the following ordinary differential equation:

(3.1) Z—;L = ®(u,t), u(0) = up,
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where
(3.2) d(u,t) = —u+ (A*A+al) TA* fs, wup =0,

and the discretization is based on an explicit Runge-Kutta formula.

Step 2. The stopping timg is defined by using the following generalization of the discrepancy
principle:

whenr €]1, 2[, the stopping time is chosen by the formula

(3.3) [ Aus(ts) — fsl| = 70

and we assume that

(3.4) 7§ < |[Aug(t) — fs5]| foralltimes t < t;

i.e.,ts is the first moment, at which the discrepancy is equal#to. If
| Aug — fs]| > 79,

then formulas[(3]3) angl (3.4) determine uniqugly- 0, see[[17].

4. NUMERICAL EXPERIMENTS

In the following, three extremely unstable test examples from the literature are presented.
Comparisons are made for the regularized solutions chosen by DSM and by the variational reg-
ularization method. Tablé (4.1) displays the results of these ill-posed examples for which the
exact solutions are known. In each example; the size of the coefficient maataxaken as

20 x 20 and the noise term 5= 0.02 andr = 1.9, ande(t) = 4.

Example 4.1. (PHILIPS example [10]):
Consider Fredholm integral equation of the first kind|(1.2), whete—6, b = 6 and

_ 1+cos(@), |s —t] < 3.
K(S’t)_{o, s —t| > 3.

B 1 s 9 . [mls|
g(s) = (6 —|s|) (1 + 5 cos (?>) + 5, 5in (?)
and the exact solution(t) is given by

[ 1+cos(Z), |t < 3.
u(t) = { 0, ’ It > 3.

By using Galerkin method for discretization with orthonormal box functions as basis functions
(seel®], chapter 7), where both integration intervals are [-6,6]. Then the Galerkin method leads
to a linear ill-posed system of equatioAs = f where the condition number of the matrixis

equal t03.95818402¢3. Perturbed the right-hand side vecirby adding a noise terito the

last row in f; in order to havefs, then we have an extremely unstable system.

Example 4.2. (SHAW example([22]):

Consider Fredholm integral equation of the first kind|(1.2), where=~, b = 5 and

Sin w

K(s,t) = (cos(s) + cos(t))? ( ) ,  w = m(sin(s) + sin(t)),

and the exact solution is given by
u(t) = aj exp(—cy(t — t1)?) + ag exp(—ca(t — t2)?).

w
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By using quadrature method (seé [5], chapter 6), where both integration intervaigagg, [

hence, we obtain a linear ill-posed system of equatidns= f, where the condition number

of the matrixA is equal t03.74711237¢4. Perturbed the right-hand side vectrby adding

a noise termy to the last row inf; in order to havefs;, then we have an extremely unstable
system. The integral equation in this example represents a one-dimensional model of an image
reconstruction problem from see€ [1]. The kerigels the point spread function for an infinitely

long slit. The parameters, a, etc., are constants that determine the shape of the sotution

in this implementation we usg = 2,a, = 1,¢; = 6,5 = 2,1, = 0.8, = —0.5, giving an

u(t) with two different "humps".

Example 4.3. (Inverse Laplace transformation (ilaplace) example [25]):
Consider Fredholm integral equation of the first kind(1.2), in the intéévab). The kernelK
and the the corresponding right-hand side are given by

K(s.1) = esp(=s0).9(3) = 755

the exact solution is given by

u(t) = exp(—t/2).
Discretization of the inverse Laplace transformation (i.e., equaftion (1.2) in this example) by
using Gauss-Laguerre quadrature method,/see [25], where both integration inter{@ls@re
hence, we obtain a linear ill posed system of equatidns= f, where the condition number

of the matrix A is equal t03.79743094¢%°. Perturbed the right-hand side vectoby adding a
noise term to the last row inf in order to havefs, then we have an extremely unstable system.

Problem Method Rerr ts,
Phillips (20) | variational regularization2.37e-2| « = 0.0457
DSM 7.55e-2|  t;=06
Shaw (20) | variational regularization1.44e-1| « = 0.00679
DSM 8.69e-2| t;=5.7
llaplace (20)| variational regularization4.18e-2| « = 0.02
DSM 3.17e-2| ts;=3.9

Table 4.1: Comparison between results of the ill-posed examples.

exact _qapprox II

The third column in Tabll) gives the relative erforrr := ”“HUTCW, and the last
column gives the values of the stopping tigeand the regularization parameter

5. HILBERT MATRIX EXAMPLE
Consider problenf (I} 1) where the matrxs a Hilbert matrix:

1 12 . 1/n

12 1/3 .. 1/(n+1)
A— : :

1/:n 1/(n+1) .. 1/(27;—1)
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The condition number of the0 x 20 Hilbert matrix A is equal t01.908432¢'. We will
consider here two different choices of the right-hand side vettfr(1.1). The exact solution
is generated by some mathematical formulaas.; = F'(¢;); t; = 0.5:. The right-hand sid¢
is then produced ag = Au..... Perturbed the right-hand side vecfgby adding a noise term
) to the last row inf; in order to havefs, then we have an extremely unstable system, where
§ = 0.02, 7= 19ande(t) = 2. The results listed in Tabl.l) show that the higher

exp(D)"

accuracy is obtained by DSM method.

Uepact = F'(t;) Method Rerr ts, a
sin(t;) variational regularization9.15e-1| a = 0.0087
DSM 8.96e-1| ts =4.35
1 variational regularization1.22e-1| o = 0.0565
B+t +t+1 DSM 7.62e-2| t; =35
variational regularization1.61e-1| o = 0.0501
exp(—t;) DSM 8.02e-2| t; =49

Table 5.1: Comparison between results of Hilber matrix examples.

6. CONCLUSIONS

In this paper, the dynamical systems method which is proposed by A. G. RAMM is applied
to solve numerically some ill-posed models. Three test examples taken from the literature
are tested, the PHILLIPS example, the SHAW example, and the inverse Laplace transformation
(ilaplace) example. Also artificial examples by using the Hilbert matrix are tested. Comparisons
are made between the DSM and the variational regularization method. For all test problems with
noise considered in this paper, the DSM has many advantages than the other, itis easier to apply,
can choose a regularized solution that is as good as and frequently better than the regularized
solution chosen by the variational regularization method. The main difficulty in variational
regularization method is the inversion of the mat#ixA + o which is numerically difficult if
« is small, because the condition number of the matrixl is much larger than the condition
number of the matrix4d. We noted that in all tested examples the relative errors by using the
DSM are smaller than the relative errors by using the variational regularization method or it is
of the same order of magnitude.
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